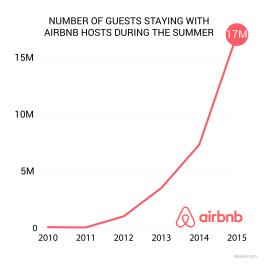
Short-term rentals and the housing market: Quasi-experimental evidence from Airbnb in Los Angeles

Hans Koster (VU Amsterdam, HSE, CEPR, Tinbergen Institute) **Jos van Ommeren** (VU Amsterdam, Tinbergen Institute) Nicolas Volkhausen (VU Amsterdam)

July, 2019

Outline

Introduction

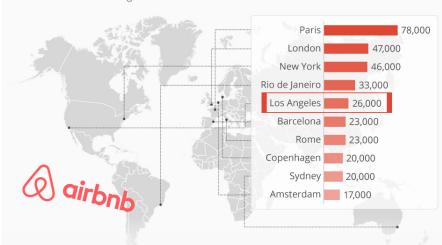

- 1 Introduction
- 2 Context and data
- 3 Methodology
- 4 Graphical evidence
- 5 Results
- 6 Overall price effects
- 7 Summary

Methodology Graphical evidence Results •00000000000

Introduction

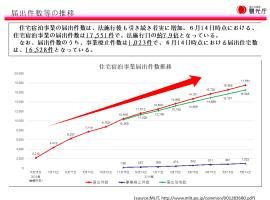
Introduction

Spectacular growth of online rental platforms in recent years



00000000000

Introduction


Which cities have the most *Airbnb* listings?

Number of Airbnb listings in cities worldwide in 2016

Introduction

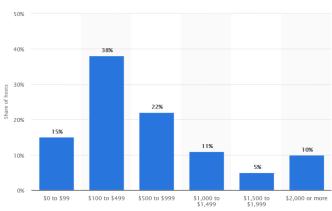
- What about Japan?
- Extremely relaxed policies!
- June 2018: registration to local government is required
- Allowing short-term letting through Airbnb up to 180 days per year
- Airbnb short-term letting is (still) not popular:
- 800,000 nights (out of 500 million accommodation nights)
- but is growing fast

- (source:MLII, http://www.mlit.go.jp/common/001283680.pd
- Registrations increased about 8 times
- Green: cumulative number of net registrations
- Blue: number of properties closed down.

July 2019

000000000000

Introduction


- grey: number of nights
- orange: number of users

- Short-term letting policies are likely very important
- What are the welfare consequences?
- What are the distributional consequences?

Introduct<u>ion</u>

Introduction

Monthly revenues can be substantial

Monthly income in U.S. dollars

00000000000

Introduction

Spectacular growth of online rental platforms in recent years

- Airbnb is the most popular platform
- Complaints from local inhabitants: decrease in housing affordability
- On the other hand: developers and local homeowners may benefit

Introduction: Airbnb and the housing market

We test the impact of Airbnb on the housing market

Expected effects on property values:

- Efficient use effect (house prices and rents +)
- Housing supply effect (rents +)
- Externality effect (house prices and rents –)

Introduction: set-up

 $\textit{Airbnb} \Rightarrow \text{property values suffers from endogeneity issues}$

- The most attractive locations for tourists are likely also more attractive to residents
- Measurement error in Airbnb listings

Introduction: set-up

Introduction

0000000000000

 $Airbnb \Rightarrow$ property values suffers from endogeneity issues

- The most attractive locations for tourists are likely also more attractive to residents
- 2 Measurement error in Airbnb listings

We therefore use a quasi-experimental research design

- 18 out of 88 cities in LA county implemented Home Sharing Ordinances that restrict Short-Term Renting
- ... while surrounding cities (including the City of Los Angeles) did not!
- We compare changes in listings and prices close to the borders of those 'HSO areas'
- ... Panel RDD

Introduction: Contribution

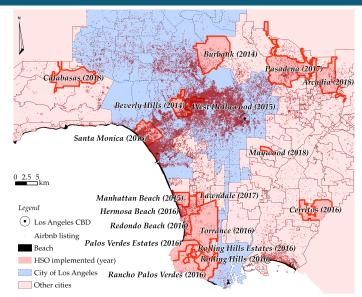
We improve on the literature in the following ways:

- We evaluate the effectiveness of Airbnb policies
- We use plausibly exogenous temporal variation in Airbnb listings with respect to house prices and rents
- We show heterogeneity in the effect of *Airbnb* on the housing market

Introduction: results

Due to Home-Sharing Ordinances:

- **11** Listings of entire properties $\downarrow 70\%$
- 2 Home-sharing listings $\downarrow 50\%$
- **3** House prices $\downarrow 3\%$
 - ... but the effect is stronger in areas with more tourist demand
- 4 Similar effects for rents $\downarrow 3\%$


5 Airbnb has large price effects (up to 25%) in 'touristy' places

⇒ ... Negative welfare effect of HSOs on house prices

Context: Airbnb

- Airbnb started in 2008
- More than 42 thousand listings in LA county last month
- 61% are rentals of entire properties

Context: Los Angeles County

Context: Home Sharing ordinance

- HSOs essentially ban informal rentals of entire properties
 - it requires hosts to have a business license
 - comply with health and safety laws
 - pay a tax on listings
- 4 out of 18 cities still allow for home sharing
 - It is allowed for maximally 30 days a year
 - The host should be physically present

⇒ ...HSOs are typically enforced

Data

Airbnb listings:

- 15 web scrapes from the websites www.tomslee.net and www.insideairbnb.com between October 2014 and September 2018
- We know where (up to 200m) and when each property was listed
- Entire properties vs. home sharing
- We create a *panel dataset* for each accommodation
- listed = 1 if accommodation is listed at that time (average = 0.3)

Data

House prices:

- Housing transactions from the LA County Assessor's Office
- Focus on properties between 2014 and 2018
- Wide range of housing characteristics, including property type
- Drop outlier and multi-unit transactions
- Create listings rate: listings/housing units <200m (average = 0.6%)

Introduction

Different steps:

- Estimate the effect of HSOs on Airbnb listings
- 2 Estimate the effect of HSOs on house prices
- Estimate the effect of Airbnb listings on house prices
 - 'Structural equation'
 - ... Using the HSO as an instrument

Introduction

We use a Panel Regression-Discontinuity Design

For listings, we estimate:

$$(\hat{\alpha}, \hat{\lambda}_i, \hat{\mu}_{kt}) = \underset{\alpha, \lambda_i, \mu_{kt}}{\operatorname{arg min}} \sum_i \sum_t K\left(\frac{d_{ik}}{b}\right) \times (\ell_{ikt} - \alpha h_{ikt} - \lambda_i - \mu_{kt})^2 \tag{1}$$

- \bullet $\ell_{it} \Rightarrow$ Property is listed (0/1)
- h_{it} ⇒ HSO is implemented (0/1)
- lacksquare $\lambda_i, \mu_{kt} \Rightarrow$ Property, time F.E. near border k
- \blacksquare $K(\cdot) \Rightarrow$ Kernel function dependent on distance to border and bandwidth
- $\blacksquare \ \alpha \Rightarrow$ Parameter of interest

- We include observations within b km of the border
 - Apply Imbens-Kalyanaraman procedure

Introduction

2 When testing the impact of the HSO on house prices, we have:

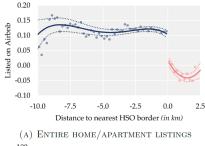
$$(\hat{\beta}, \hat{\zeta}, \hat{\eta}_j, \hat{\theta}_{kt}) = \underset{\beta, \zeta, \eta_j, \theta_t}{\operatorname{arg min}} \sum_{i} \sum_{t} K\left(\frac{d_{ik}}{b}\right) \times (\log p_{ijkt} - \beta h_{ijkt} - \zeta x_{ijk} - \eta_j - \theta_{kt})^2,$$
(2)

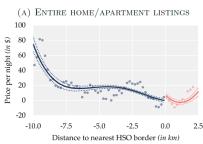
- $p_{ijt} \Rightarrow \text{Price of property } i \text{ in block } j \text{ in month } t$
- $h_{ijt} \Rightarrow \text{HSO}$ is implemented (0/1)
- $\blacksquare x_{ij} \Rightarrow$ Housing and location controls
- $K(\cdot) \Rightarrow$ Kernel function dependent on distance to border and bandwidth
- $\beta \Rightarrow$ Parameter of interest

Introduction

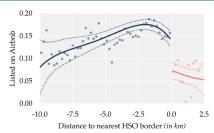
3 To test the impact of Airbnb listings rate on house prices we use IV

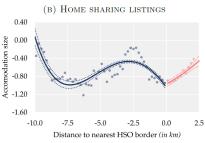
First stage:

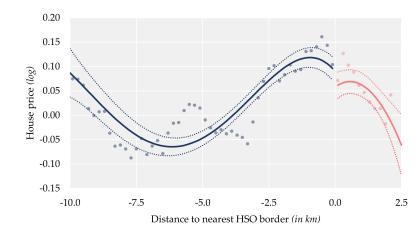

$$(\hat{\hat{\delta}}, \hat{\hat{\zeta}}, \hat{\hat{\eta}}_{j}, \hat{\hat{\theta}}_{kt}) = \underset{\tilde{\delta}, \hat{\zeta}, \tilde{\eta}_{j}, \tilde{\theta}_{t}}{\arg \min} \sum_{i} \sum_{t} K\left(\frac{d_{ik}}{b}\right) \times (r_{ijkt} - \tilde{\delta}_{k} h_{ijkt} - \tilde{\zeta} x_{ijk} - \tilde{\eta}_{j} - \tilde{\theta}_{kt})^{2}$$
(3)


Second stage:

$$(\hat{\gamma}, \hat{\zeta}, \hat{\eta}_{j}, \hat{\theta}_{kt}) = \underset{\gamma, \zeta, \eta_{j}, \theta_{t}}{\min} \sum_{i} \sum_{t} K\left(\frac{d_{ik}}{b}\right) \times (\log p_{ijkt} - \gamma \hat{r}_{ijkt} - \zeta x_{ijk} - \eta_{j} - \theta_{kt})^{2}$$


$$(4)$$


Graphical evidence: listings


(C) PRICE PER NIGHT (in \$)

(D) ACCOMMODATION SIZE

Graphical evidence: house prices

Graphical evidence: other

Introduction

- We test for continuity of densities of transactions and listings before the HSO
 - ... Densities of listings and transactions are essentially continuous at the HSO borders (...McCrary test)
- We test for continuity of changes in housing characteristics
- We test for sorting
 - We do not find evidence for discontinuities in changes in household characteristics
 - ... or public good provision (test scores)

Results

Recall the different steps:

- Estimate the effect of HSOs on Airbnb listings
- 2 Estimate the effect of HSOs on house prices
- 3 Estimate the effect of Airbnb listings on house prices

Results: HSO and Airbnb listings

The effect on listings:

Introduction

Listings of entire properties are reduced by about 10%-points ($\approx 30\%$)

HSO and listings of entire properties

(Dependent variable: Airbnb property is listed)

	Panel	+ Border	Home-sharing
	RDD	segment f.e.	allowed
	(1)	(2)	(3)
HSO implemented	-0.0969*** (0.0086)	-0.0985*** (0.0088)	
HSO implemented \times	,	. ,	-0.1063***
home sharing allowed			(0.0137)
HSO implemented×			-0.0939***
home sharing not allowed			(0.0112)
Property fixed effects	Yes	Yes	Yes
HSO area×month fixed effects	Yes	Yes	Yes
Border segment×month fixed effects	No	Yes	Yes
Number of observations	270,906	270,621	270,741
Bandwidth, b (in km)	1.6716	1.6708	1.6712
R^2	0.3460	0.3496	0.3496

Notes: We exclude properties for which the property type is unknown. Standard errors are clustered at the census block level and in parentheses. *** p < 0.01, ** p < 0.05, *

Results: HSO and Airbnb listings

Introduction

- The effect of HSOs on listings:
 - \blacksquare Home-sharing listings are reduced by about 5.5%-points ($\approx 20\%$)
 - No effect of HSOs on listings in areas where home sharing is still allowed

HSO and home-sharing listings

(Dependent variable: Airbnb property is listed)

	Panel	Home-sharing	
	RDD	segment f.e.	allowed
	(1)	(2)	(3)
HSO implemented	-0.0537***	-0.0587***	
F	(0.0117)	(0.0125)	
HSO implemented×	(/	(/	-0.0173
home sharing allowed			(0.0178)
HSO implemented×			-0.0872***
home sharing not allowed			(0.0172)
Property fixed effects	Yes	Yes	Yes
HSO area×month fixed effects	Yes	Yes	Yes
Border segment × month fixed effects	No	Yes	Yes
Number of observations	171,778	171,448	171,433
Bandwidth, b (in km)	1.815	1.812	1.8117
R^2	0.3325	0.3428	0.3367

Notes: We exclude properties for which the property type is unknown. Standard errors are clustered at the census block level and in parentheses. *** p < 0.01, ** p < 0.05, *

Results: HSOs and house prices

Introduction

- The effect of HSOs on house prices;
 - Effect of HSOs is about 3%.

HSO and house prices

(Dependent variable: log of house price in \$)

	Panel	+ Border	_
	RDD	segment f.e.	
	(1)	(2)	
HSO implemented	-0.0421***	-0.0297***	
P	(0.0067)	(0.0080)	
Housing characteristics	Yes	Yes	
Census block fixed effects	Yes	Yes	
HSO area×month fixed effects	Yes	Yes	
Border segment×month fixed effects	No	Yes	
Number of observations	58,316	58,285	
Bandwidth, b (in km)	1.8447	1.8594	
R^2	0.9025	0.9098	

Notes: We exclude transactions occurring within one year after implementation of the HSO. Standard errors are clustered at the census block and in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

Results: HSOs and house prices

- 2 We do a lot of sensitivity checks and placebo-checks
 - The results are robust...
 - We do not find significant placebo-coefficients (although they are precisely estimated)

Results: Airbnb listings and house prices

- The effect of listings on house prices;
 - $\uparrow 1\sigma$ increase in listings \Rightarrow house price $\uparrow 4.2\%$.

Airbnb listings and house prices

(Dependent variable: log of house price in \$)

	Panel	+ Border	Nonlinear
	RDD	segment f.e.	effect
	(1)	(2)	(4)
Listings rate <200m (imputed)	0.0351*** (0.0100)	0.0226*** (0.0088)	0.0203** (0.0078)
Listings rate ² <200m (imputed)			0.0001** (0.0000)
Housing characteristics	Yes	Yes	Yes
Census block fixed effects	Yes	Yes	Yes
HSO area × month fixed effects	Yes	Yes	Yes
Border segment×month fixed effects	No	Yes	Yes
Number of observations	81,672	80,905	80,905
Bandwidth, b (in km)	2.9847	2.9628	2.9628
Kleibergen-Paap F-statistic	18.49	18.15	18.15

Notes: **Bold** indicates instrumented. The instrument are city-specific HSO dummies. We exclude transactions occurring within one year after implementation of an HSO. Standard errors are clustered at the census block and in parentheses. *** p < 0.01. *** p < 0.05. ** p < 0.10.

Introduction

Overall benefits and costs

■ Price increases are the largest in areas with a high listings rate

Overall benefits and costs of Airbnb				
	Average house	Listings	in % of the	
μ	orice (in 1000 \$)	rate (in %)	house price	
Total predicted pric	e effects of Airbnb	listings:		
LA county	1,053	1.21	2.72	
Total predicted pric	2,457	2.84	6.40	
CBD <2.5km	5,054	4.56	10.30	
Total predicted pric Beach <5km	e effects near the 1,128	beach: 1.93	4.36	
Beach <2.5km	1,113	2.44	5.51	

Notes: To estimate the yearly effects, we assume a discount rate of 2%. We further assume that the rents are equal to discounted house prices.

Overall benefits and costs

Introduction

Price increases are the largest in areas with a high listings rate

	Average house	Listings	in % of the		
	price (in 1000 \$)	rate (in %)	house price		
Total predicted price effects for specific neighborhoods:					
Venice	1,212	12.77	28.84		
West Hollywood	1,593	3.55	8.01		
Malibu	2,193	5.89	13.30		
Santa Monica	1,645	1.76	3.98		
Redondo Beach	888	1.17	2.64		
Pasadena	928	0.96	2.17		

Context and data Methodology Graphical evidence Results Overall price effects Summary

Summary

Introduction

We test the impact of *Airbnb* on the housing market

- We use a quasi-experimental set-up based on implementation of HSOs
- Listings $\downarrow 50 70\%$ due to HSOs
- House prices and rents ↓ 3% due to HSOs
 - Effects depends on timing and location
- Property values $\uparrow 2 30\%$ due to *Airbnb*

- HSOs are effective in reducing Airbnb listings
 - ...but yield negative welfare effects
- Airbnb generally has a positive effect on total housing prices
 - ... but strong distributional implications

Short-term rentals and the housing market: Quasi-experimental evidence from Airbnb in Los Angeles

Hans Koster (VU Amsterdam, HSE, CEPR, Tinbergen Institute) **Jos van Ommeren** (VU Amsterdam, Tinbergen Institute) Nicolas Volkhausen (VU Amsterdam)

July, 2019